The Central Limit Theorem Under Random Censorship

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The central limit theorem under random truncation.

Under left truncation, data (X(i), Y(i)) are observed only when Y(i) ≤ X(i). Usually, the distribution function F of the X(i) is the target of interest. In this paper, we study linear functionals ∫ φ dF(n) of the nonparametric maximum likelihood estimator (MLE) of F, the Lynden-Bell estimator F(n). A useful representation of ∫ φ dF(n) is derived which yields asymptotic normality under optimal m...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Central Limit Theorem for Random Partitions under the Plancherel Measure

A partition of a natural number n is any integer sequence λ = (λ1, λ2, . . . ) such that λ1 ≥ λ2 ≥ · · · ≥ 0 and λ1 + λ2 + · · · = n (notation: λ ⊢ n). In particular, λ1 = max{λi ∈ λ}. Every partition λ ⊢ n can be represented geometrically by a planar shape called the Young diagram, consisting of n unit cell arranged in consecutive columns, containing λ1, λ2, . . . cells, respectively. On the s...

متن کامل

Central Limit Theorem for Random Fields

A new variant of CLT is established for random elds de ned on Rd which are strictly stationary, with nite second moment and weakly dependent (comprising cases of positive or negative association). The summation domains grow in the van Hove sense. Simultaneously the indices of observations form more and more dense grids in these domains. Thus the e ect of combining two scaling procedures is stud...

متن کامل

A Central Limit Theorem for Random Fields

A central limit theorem is proved for α-mixing random fields. The sets of locations where the random field is observed become more and more dense in an increasing sequence of domains. The central limit theorem concerns these observations. The limit theorem is applied to obtain asymptotic normality of kernel type density estimators. It turns out that in our setting the covariance structure of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1995

ISSN: 0090-5364

DOI: 10.1214/aos/1176324528